
RTL for a subset of the MIPS ISA using the Simulated Multicycle Implementation

In this simulation, most MIPS instructions are executed in a total of 4 clock cycles.

The first clock cycle is the same for all instructions, because it is during this cycle that the 
instruction is actually fetched from memory.  (Note that, in this and subsequent examples, we 
may be able to do two micro-operations on the same clock.)
 Cycle == 0:	 IR ← M[PC], PC ← PC + 4

For the second and subsequent clock cycles, the micro-operations performed depend on the 
opcode of the instruction that is in the IR.  In addition, in the RTL below  rs, rt, rd, func, and 
constant are fields in the instruction which is in the IR.

Most branching instructions (jr, beq, bne, j) do nothing on cycles 2 and 3.

R-Type (all R-Format instructions other than jr)

 Cycle == 1:	 ALUInputA ← register[rs], ALUInputB ←  register[rt] 
 Cycle == 2: 	 ALUOutput ← ALUInputA func ALUInputB (1)
 Cycle == 3: 	 register[rd] ← ALUOuput

 Note: (1) func is the function specified by the func field of the IR

jr

 Cycle == 1:	 PC ← register[rs] 
 
addi, andi, ori, xori, slti, lui 
 Cycle == 1:	 ALUInputA ← register[rs], ALUInputB ←  I constant (1)
 Cycle == 2:	 ALUOutput ← ALUInputA op ALUInputB                (2)
 Cycle == 3:	 register[rt] ← ALUOutput

 Notes: (1) sign extended for addi,xori,slti; not sign-extended for andi,ori,lui
        (2) “op” is the appropriate operation based on the opcode

lw, sw

 Cycle == 1:	 ALUInputA ← register[rs], ALUInputB ← sign-extend(I constant)
 Cycle == 2:	 ALUOutput ← ALUInputA + ALUInputB
 Cycle == 3 && opcode == lw: register[rt] ← M[ALUOutput]
 Cycle == 3 && opcode == sw: M[ALUOutput] ← register[rt]

beq, bne

 Cycle == 1: 	 (opcode == beq && register[rs] == register[rt] ||
	 opcode == bne && register[rs] != register[rt]) : 
	 PC ←  PC + sign-extend(I constant) * 4
j

 Cycle == 1:	 PC ← PC[31..28] | J constant * 4

jal

 Cycle == 1:	 ALUInputA ← PC, PC ← PC[31..28] | J constant * 4
 Cycle == 2:	 ALUOutput ← ALUInputA
 Cycle == 3:	 register[31] ← ALUOutput


